SOLVING LINEAR SYSTEMS – ELIMINATION METHOD

If you have a linear system, you can solve it by adding or subtracting the equations in order to eliminate a variable.

BUT...what happens when the coefficients are NOT THE SAME????

- **Steps:** 1) Choose the equation with only an x or y (coefficient of 1) and multiply it by a number to create a term that is the same as in the other equation.
 - 2) Add or subtract the two equations so that you eliminate either of the variables "x" or "y".
 - 3) Find the solution for one variable.
 - 4) Substitute the solution into either of the original equations and solve for the other variable.
 - 5) Write a concluding statement ": the solution is (x, y)."

Examples:

1. Solve:
$$(1)(x + 3y = 11)$$

 $(2)(3x + 2y = 19)$

Multiply one of the equations: $0 \times 3(x + 3y = 11)$				
	3 x +9y = 330	ž		
Add or subtract the equations to eliminate one of the variables and then solve: (2) (3)	Solve for the other variable:	Solution:		
3x + 2y = 19	Sub 4=2 in	Pol		
$= 3x + 9y = 33$ $\emptyset [2y - 9y] = [19 - 33]$	x + 3y=11	15		
	x + 3(2) = 11	(5, 2)		
$-\frac{7}{4} = -\frac{14}{-7}$	X + 6 = 11 X = 11-6	(3) 27		
4 = 2	X=5			
Check LS RS (5,2) X+34 11	LSIRS			
* 1	3x+2y 19 5)+2(2)			
V	14			

2. Solve:
$$3x - 4y = 16$$
 Ω
 $2x + y = 7$ Ω

Multiply one of the equations:	4 (-2x+y=7 8x+44=6) 18 3
Add or subtract the equations to eliminate one of the variables and then solve:	Solve for the other variable:	Solution:
3x -4y = 16	Sub x=4 in 3	4
+ 8x + 4y = 28	2x+y=7	POI
[3x+8x] 0 = [16 + 28]	2(4) + 4 = 7	ıs
11 x = 44	8+4=7	(4,-1)
11 11	y = 7-8	
$X = \overline{A}$	y = -1	

Example:

A company hosted a winter holiday reception at a local banquet hall and served two different dinners. There were 200 people who attended the function.

Let x represent the # roast beef dinners and y represent the # of grilled chicken dinners.

This is represented by the equation:
$$x + y = 200$$

The roast beef dinner cost \$21 per plate and the grilled chicken dinner cost \$15 per plate. The dinner cost the company a total of \$3720.

This is represented by the equation: 21x + 15y = 3720 (2)

Q: How many roast beef dinners and grilled chicken dinners were served?

Multiply one of the equations:		200)
	21x + 214	= 4200 3
Add or subtract the equations to eliminate one of the variables and then solve: (2) (3)	Solve for the other variable:	Solution:
21x +15y = 3720	Sub 4=80 in 1	POI is
- 21x + 21y = 4200	x + y = 200	(120,80)
Ø [154-214] = [3720-4200]	X + (80) = 200	Roast Chicken Beef
7 2 71/65	X = 200 - 80	
69 - 480		At the function
-6 -6	X=120	120 Roast beef &
(y = 80)		80 Chicken dinners
		were served.